The Projection map on a Hilbert Space

Published on 8/8/2025

functional analysisanalysishilbert spaces

A Hilbert Space is a Vector Space together with an inner product which is complete for the norm given by the inner product.

Parallelogram Law:

a+b22+ab22=12(a2+b2)\begin{equation} \left|\frac{a+b}{2}\right|^2 + \left|\frac{a-b}{2}\right|^2 = \frac{1}{2} (|a|^2 + |b|^2) \end{equation}

for all a,bHa,b \in H.

Theorem Let KK be a nonempty convex closed subset of HH. For every fHf \in H there exists unique uKu \in K such that fufv|f-u| \le |f-v| for all vKv \in K. We write u=PKfu = P_K f.

Proof: Let d=infvKfvd = \inf_{v \in K} |f-v| and vnKv_n \in K a sequence such that fvnd|f-v_n| \to d. Then,

vnvm22=12(fvn2+fvm2)fvnvm2212(fvn2+fvm2)d2.\left|\frac{v_n - v_m}{2}\right|^2 = \frac{1}{2}(|f-v_n|^2 + |f-v_m|^2) - \left| f- \frac{v_n - v_m}{2} \right|^2 \le \frac{1}{2}(|f-v_n|^2 + |f-v_m|^2) - d^2.

Thus vnv_n is a Cauchy sequence, so limvn\lim v_n exists and is in KK since KK is closed. Uniqueness follows by the same inequality.

An equivalent characterization of uu is the following:

Proposition 1: Let KK be as in the previous theorem. Then u=PKfu = P_K f if and only if uKu \in K and
(fu,vu)0(f-u,v-u) \le 0 for all vKv \in K.

Proof:

We compute

fu2fv2=2(f,vu)(v,v)+(u,u)2(u,vu)+2(u,vu)\begin{equation} |f-u|^2 - |f-v|^2 = 2 (f,v-u) - (v,v) + (u,u) - 2(u, v-u) + 2(u, v-u) \end{equation} =2(fu,vu)vu2.= 2(f-u, v-u) - |v-u|^2.

If (fu,vu)0(f-u,v-u) \le 0, then fufv|f-u| \le |f-v| for all vKv \in K so u=Pkfu=P_k f. Conversely if u=PKfu=P_K f, then for any wKw \in K, replacing v=tu+(1t)wv=tu + (1-t)w in the above inequality yields,

2(fu,wu)(1t)wu22(f-u, w-u) \le (1-t) |w-u|^2

for all t(0,1)t \in (0,1). Letting t1t \to 1 implies

(fu,wu)0.(f-u,w-u) \le 0.

Corollary 1: Let KK be a nonempty closed convex subset of HH. Then,

PKf1PKf2f1f2|P_K f_1 - P_K f_2| \le |f_1 - f_2|

for all f1,f2Hf_1, f_2 \in H.

Proof. The previous proposition implies

0(f1PKf1,PKf2PKf1)+(f2PKf2,PKf1PKf2)0 \ge (f_1 - P_K f_1, P_K f_2 - P_K f_1) + (f_2 - P_K f_2, P_K f_1 - P_K f_2) =(PKf1PKf2,PKf1PKf2)(f1f2,PKf1PKf2).= (P_K f_1 - P_K f_2, P_K f_1 - P_K f_2) - (f_1 - f_2, P_K f_1 - P_K f_2 ).

The result follows since (f1f2,PKf1PKf2)f1f2PKf1PKf2(f_1 - f_2, P_K f_1 - P_K f_2 ) \le |f_1 - f_2||P_K f_1 - P_K f_2| by the Cauchy-Schwartz inequality.

Corollary 2 Let VV be a closed subspace of HH and fHf \in H. Then u=PVfu=P_V f if and only if
(fu,v)=0(f-u,v) = 0 for all vVv \in V.

Proof. Let λR\lambda \in \mathbb{R} and v=λuv = \lambda u, so that by Proposition 1

(λ1)(fu,u)0(\lambda - 1) (f-u, u) \le 0

for all λR\lambda \in \mathbb{R}. It follows that (fu,u)=0(f-u,u) = 0.

Corollary 3 If VV is a closed subspace of HH, then PV:HHP_V : H \to H is a linear operator.

Proof. Let f,gHf,g \in H, λ0\lambda \not = 0, u=PVfu = P_V f and v=PVgv=P_V g. For any wVw \in V we have

(λf+g(λu+v),w(λu+v))=λ(fu,λ1(wv)u)+(gv,(wλu)v)=0.(\lambda f + g - (\lambda u + v), w - (\lambda u + v)) = \lambda (f - u, \lambda^{-1}(w - v) - u) + (g-v, (w-\lambda u) - v) = 0.

The case λ=0\lambda = 0 is trivial. Thus, PV(λf+g)=λPV(f)+PV(g)P_V(\lambda f + g) = \lambda P_V(f) + P_V(g) .