The Representation Theorem and the Lax-Millgram theorem

Published on 8/8/2025

functional analysisanalysishilbert spaces

Theorem (Riesz Representation Theorem). Let HH be a Hilbert space and ϕH\phi \in H^*. Then there exists unique uHu \in H such that ϕ(v)=(u,v)\phi(v) = (u,v) for all vHv \in H.

Proof. Let ϕH\phi \in H^* and kerϕ\ker\phi its kernel. Note that kerϕ\ker \phi is closed since ϕ\phi is continuous. If ϕ0\phi \equiv 0 then u=0u=0. If not, choose u0∉kerϕu_0 \not \in \ker \phi, set

u1=u0Pkerϕu0u0Pkerϕu0,u_1 = \frac{u_0 - P_{\ker \phi} u_0}{|u_0 - P_{\ker \phi} u_0|},

and

u=ϕ(u1)u1.u = \phi(u_1) u_1.

Observe that u(kerϕ)u \in (\ker \phi)^\perp. Thus, for all vHv \in H,

ϕ(v)=ϕ(vPuv+Puv)=ϕ(Puv)=ϕ((u,v)(u,u)u)=(u,v).\phi(v) = \phi(v - P_u v + P_u v) = \phi(P_u v) = \phi\left(\frac{(u,v)}{(u,u)} u\right) = (u,v).

Theorem (Banach Fixed Point). Let XX be a nonempty, complete metric space, and S:XXS: X \to X a contraction, i.e. there exists 0<α<10<\alpha<1 such that d(Sx,Sy)αd(x,y)d(Sx,Sy) \le \alpha d(x,y) for all x,yXx,y \in X. Then, SS has a unique fixed point in XX.

Proof. Choose xXx \in X and consider the sequence xn=Snxx_n = S^n x. For any 1nm1\le n \le m we have

d(xm,xn)d(xm,xm1)++d(xn+1,xn)<d(Sx,x)(αm++αn)<d(Sx,x)αn11α.d(x_m,x_n) \le d(x_m, x_{m-1}) + \dots + d(x_{n+1},x_n) < d(Sx,x) (\alpha^m + \dots + \alpha^n) < d(Sx,x) \alpha^n \frac{1}{1-\alpha}.

Thus xnx_n is a Cauchy sequence, and by completeness, limxn\lim x_n exists. Set u=limxnu = \lim x_n. By continuity of SS,

Su=Slimxn=limSxn=limxn+1=u,S u = S\lim x_n = \lim S x_n = \lim x_{n+1} = u,

so uu is a fixed point. Finally, if we have another fixed point vXv \in X, then

d(u,v)=d(Su,Sv)αd(u,v)d(u,v) = d(Su, Sv) \le \alpha d(u,v)

so d(u,v)=0d(u,v) = 0.

We will now prove the celebrated Lax-Millgram Theorem:

Theorem (Lax-Millgram) Let a:H×HRa: H \times H \to \mathbb{R} be a continuous, coercive, billinear form on HH. Given ϕH\phi \in H^*, there exists unique uHu \in H such that

a(u,v)=ϕ(v)a(u,v) = \phi(v)

for all vHv \in H. Furthermore, if aa is symmetric, then uu is the unique element such that

12a(u,u)ϕ(u)=minvH12a(v,v)ϕ(v).\frac{1}{2} a(u,u) - \phi(u) = \min_{v \in H} \frac{1}{2} a(v,v) - \phi(v).

Definition. A billinear form a:H×HRa: H \times H \to \mathbb{R} is coercive if there exists α>0\alpha > 0 such that

a(v,v)αv2for all vH.a(v,v) \ge \alpha |v|^2 \: \text{for all } v \in H.

We say aa is continuous if there exists C>0C > 0 such that

a(u,v)Cuvfor all u,vH.a(u,v) \le C |u||v| \: \text{for all } u,v \in H.

Proof. By the Riesz-Representation, there exists fHf \in H such that ϕ(v)=(f,v)\phi(v)=(f,v) for all vHv \in H. Similarly, for any fixed uHu \in H the map va(u,v)v \mapsto a(u,v) is a continuous linear functional on HH, so there exists a unique βuH\beta_u \in H such that a(u,v)=(βu,v)a(u,v) = (\beta_u, v) for all vHv \in H. Observe that uβuu \mapsto \beta_u is a linear map since aa is linear in the first component. Denote this linear map by AuA u, so

(Au,u)=a(u,u).\begin{equation} (Au,u) = a(u,u). \end{equation}

We wish to find a unique uHu \in H such that

(fAu,v)=(f,v)(Au,v)=ϕ(v)a(u,v)=0.\begin{equation} (f- Au, v) = (f,v) - (Au,v) = \phi(v) - a(u,v) = 0. \end{equation}

For any λ>0\lambda > 0 we must have

(λfλAu+uu,v)=0for all vH.(\lambda f - \lambda Au + u - u, v) = 0 \: \text{for all } v \in H.

Thus,

u=λfλAu+u.u = \lambda f - \lambda Au + u.

Hence, it suffices to show the operator Sv=λfλAv+vS v = \lambda f - \lambda Av + v has a fixed point for some λ>0\lambda > 0. We compute

SvSw2=vwλA(vw)2=vw22λ(vw,A(vw))+λ2A(vw)2vw2(C2λ22αλ+1).\begin{align*} &|Sv - Sw|^2 = |v-w - \lambda A(v-w)|^2 \\ &=|v-w|^2 - 2\lambda (v-w, A(v-w)) + \lambda^2 |A(v-w)|^2 \\ &\le |v-w|^2 (C^2 \lambda^2 -2\alpha \lambda +1). \end{align*}

If 0<λ<2αC20 < \lambda< \frac{2\alpha}{C^2}, then S:HHS:H \to H is a contraction map, so it has a unique fixed point by the Banach fixed point theorem. This establishes part 1 of the theorem.

Suppose also that aa is symmetric. Then, aa defines an inner product on HH. Furthermore, the norms induced by aa and the standard inner product are equivalent by continuity and coerciveness. Thus, HH is also a Hilbert space under the inner product given by aa. By the Riesz Representation Theorem, there exists gHg \in H such that ϕ(v)=a(g,v)\phi(v) = a(g,v) for all vHv \in H. By part 1, a(gu,v)=0a(g-u,v) = 0. But then, uHu \in H is the unique element such that

a(gu,gu)=minvHa(gv,gv)=minvHa(g,g)2a(g,v)+a(v,v).a(g-u,g-u) = \min_{v \in H} a(g-v, g-v) = \min_{v \in H} a(g,g) - 2 a(g,v) + a(v,v).

Hence,

minvH12a(v,v)ϕ(v)=12a(u,u)ϕ(v).\min_{v \in H} \frac{1}{2} a(v,v) - \phi(v) = \frac{1}{2} a(u,u) - \phi(v).